Les limites de la connaissance 6-3) Réalisme et monde quantique 

 ébauche d'analyse des implications ontologiques. théories à variables cachées, non-séparabilité et le problème de la mesure


partie 2

www.math.polytechnique.fr/~paul/ceri.pdf (formalisme quantique).


formalisme+quantique+mandala-3d.jpg

mandala. formalisme quantique



Préambule

La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?


Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gödel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?

(Je voudrais ici faire partager ma lecture de Hervé Zwirn).


Les limites de la connaissance 6-3) Réalisme et monde quantique

  ébauche d'analyse des implications ontologiques. théories à variables cachées, non-séparabilité et le problème de la mesure

Partie 2.


I) Principales étapes de l'article.

Voir la partie 1 de l'article:

1) Ebauche d'analyse des implications ontologiques.

          a) Le caractère abstrait du formalisme quantique est déroutant.

          Le caractère abstrait du formalisme quantique est déroutant. 

          b) Signification de ces propriétés: 

                  A) Disparition de la correspondance directe entre état et propriétés. 

                  B) Indéterminisme.

                  C) Interférence des amplitudes de probabilité.

2) Les théories à variables cachées et la non-séparabilité.

           a) La complétude de la mécanique quantique 


  Partie 2 de l'article.

           b) Le paradoxe EPR.

           c) la réponse de Bohr. 

           d) Les théories à variables cachées.

           e) Le verdict expérimental: les inégalités de Bell.

 3) Résumé et conclusions

Toute théorie reproduisant les prédictions de la mécanique quantique doit donc être non locale et contextualiste.

 

 

 Partie 2 de l'article:

b) Le paradoxe EPR.

Le paradoxe EPR, abréviation de Einstein-Podolsky-Rosen, est uneexpérience de pensée, élaborée parAlbert Einstein,Boris PodolskyetNathan Rosen, dont le but premier était de réfuter l'interprétation de Copenhaguede laphysique quantique.

L'interprétation de Copenhague s'oppose à l'existence d'un quelconqueétatd'un système quantique avant toutemesure. En effet, il n'existe pas de preuve que cet état existe avant son observation et le supposer amène à certaines contradictions. Voir dans fr.wikipedia.org/wiki/Intrication_quantique Le caractère surprenant des états intriqués souligné par EinsteinPodolsky et Rosen dans leur article de 1935 

(Voir aussi le très intéressant texte suivant: "Interprétation de la physique quantique : La physique quantique est-elle une théorie complète ? Philippe Cristofari, Frédéric Elie, Colette Garaventa. juin 1980")


Présentation du critère de réalité par Einstein: "Si, sans perturber le système en aucune manière, on peut prédire avec certitude la valeur d'une quantité physique qui s'y rapporte, alors il y a vraiment un élément de la réalité physique qui correspond à cette quantité." 

(voir dans wikipedia:) Le "dispositif expérimental" (de pensée) proposé en 1935 est assez complexe, mais peut être décrit de manière plus simple sans en changer l'esprit.

Soit deux photons P1 et P2 intriqués (voir ci-dessus, intrication quantique) de manière à avoir un moment angulaire total égal à zéro (spins anti-corrélés ouétat singulet). Les deux quantités physiques non-commutables utilisée dans le raisonnement sont : 1) Le spin mesuré selon une direction Sx 2) Le spin mesuré selon une autre direction Sz.

Si on mesure P1 selon Sx, alors - sans aucunement perturber P2 (on suppose leprincipe de localité) on connaît nécessairement la mesure de P2 selon cet axe (l'opposé).

De même, si on mesure P2 selon Sz, alors - sans aucunement perturber P1, on connaît nécessairement la mesure de P1 selon cet axe (l'opposé également).

Donc, la mesure de P1 selon un axe et de P2 selon l'autre permet de prédire avec certitude la valeur des deux quantités physiques. Ces deux quantités possèdent donc une réalité objective, et par conséquent 2) est faux et 1) est vrai.

Tel est le paradoxe formulé initialement par EPR.

48bfd0f0518588868d10f09495996751.pngInégalités de Bell (source Wikipédia).Exemple de 2 particules 1 et 2 de spin 1/2 dans un état singulet et qui se séparent dans deux directions opposées.

Les résultats des mesures ne sont pas nécessairement identiques sur les deux particules. Par exemple, on peut mesurer le spin d'une des particules selon un certain angle et le spin de l'autre particule selon un autre angle.

Les résultats des mesures sont alors de nature statistique. Par exemple, la mesure du spin à l'aide d'un polariseur donne toujours un résultat tout ou rien. Ce que l'on obtiendra alors pour les deux mesures sont des statistiques de coïncidences : les deux mesures donnent un résultat identique dans X% des cas (et non 100% dans le cas de mesures identiques). Un grand nombre de mesures successives (sur un grand nombre de paires de particules) permet alors de calculer la corrélation entre ces mesures de spin sous des angles différents.

Si l'on se place dans l'hypothèse des théories locales déterministes à variables cachées, les inégalités de Bell donnent des relations auxquelles ces corrélations doivent obéir.

Nous allons démontrer ces inégalités dans un cas un peu plus simple que celui d'un angle quelconque afin de bien montrer l'origine du raisonnement.

Soit deux particules α et β dont le spin a trois composantes A, B et C. Les composantes peuvent prendre deux valeurs + et - (on omet le facteur 1/2). Pour chaque composante, nous noterons les valeurs A + , B − , etc. Les deux particules ont des spins opposés. Lorsque α a la composante A + , alors β a la composante A − , etc.

On mesure des paires de valeurs AB, AC et BC sur les deux particules. Le résultat des mesures est désigné par A + C − , etc.

Si l'état des particules est déterministe, décrit par des variables cachées, alors chaque particule a un spin parfaitement déterminé avec des composantes A, B et C précises. Même si les variables cachées ne sont pas connues avec exactitude, et donc le spin, il n'empêche que cette valeur précise existe.

Soit un ensemble de particules dans un état de spin donné pris dans un ensemble plus vaste, quelconque, de particules dans tous les états possibles. Par exemple est l'ensemble des particules avec ces composantes,edb39279bcc8ab222eb0f9e61b3ac0fd.pngl'ensemble des particules avec ces composantes, ...

Alors nous aurons :

22a6868fe0e4ef4db6361767df407537.pnget

d57549b7217f91ac2fc8b2ef3a5137d7.png

Ces relations découlent tout simplement de la théorie des ensembles. Donc:

901576acfeb6a37fbd2cdaac00f5bf19.png

Si2227fadae165a8119949e92c9398a8ea.pngdésigne le nombre de particules dans cet état, alors :

80225fcf9155f6b6f4e75c5e40fad606.png

Maintenant, nous effectuons nos mesures sur deux particules de spins opposés et ces particules sont émises sous forme d'un flux de particules de spins quelconques. Nous en déduisons que :

2654018b0122434e4f5e682397ebc25c.png

94d7b7259f9131b64177a53c10715e1f.pngest la probabilité de mesurer A + sur l'une des particules et B + sur l'autre.

C'est un exemple d'inégalité de Bell.

Dans le cas de la mesure du spin selon un angle quelconque, on n'utilise que deux composantes du spin et l'angle entre les composantes. Le calcul est un peu plus compliqué mais semblable. Le résultat est :

e38f3634608a10c0035ed01a511b4986.png

ou α, β et γ sont des angles donnés aux polariseurs etd8b2d889aa18202ea9cdb3ae4d2e007f.pngest la fonction de corrélation pour ces deux angles (la corrélation peut être négative).

 

Dans le cas de la mécanique quantique, si l'angle du premier polariseur est α et l'angle du deuxième polariseur est β, alors le calcul (identique à la probabilité de mesurer le spin selon l'angle α alors que l'on sait que le spin a été mesuré selon l'angle β) donne :

964cc638380962eca94ba1b1bab79f46.png

Comme on mesure des coïncidences, la fonction de corrélation est alors donnée par :

9fa3cefb7d7fee210ff00d3d1ddd46d7.png

On voit que les inégalités de Bell sont violées pour, par exemple, des angles égaux à4a96b45745972092edbf0bc61d4291f2.png,3c84cb3c9045fcf3a73755e7f8b21d0f.pnget7c550a496012713b4a654efd449a3df8.png.

L'expérience (par exemple celle d'Alain Aspect) a largement confirmé ces résultats et aussi que laloi de Malusétait vérifiée sur des photons individuels.

 

Analyse du problème. Dans le formalisme quantique, un état singulet s'écrit: 1/√2[ |A+>z |B->z - |A->z |B+>z]. (A et B étant les deux photons et leurs états correspondant à une valeur +/- 1/2 suivant Oz ). Supposons que le système soit initialement au repos et qu'à l'instant t = 0, il se désintègre. Chaque particule part dans un sens opposé (loi de la conservation de l'impulsion). Mesurons à l'instant t le spin de A suivant Oz. Si on trouve +1/2, une mesure de B suivant Oz devra donner -1/2 puisque le spin total est nul (conservation du moment cinétique), et vice versa. On peur donc prédire avec certitude quel sera le spin de B suivant Oz si on mesure celui de A, et ceci sans faire aucune mesure sur B qui peut être très éloigné de A au moment de cette mesure. Cela permet de penser que l'on n'a pas perturbé B. C'est donc que le spin de B suivant Oz a réellement cette valeur, et que, selon le critère proposé, un élément de réalité correspond à ce spin. Un mesure du spin aurait pu être faite suivant n'importe quel axe. La conclusion est que, contrairement à ce que prétend la mécanique quantique, le spin de B possède une valeur définie simultanément suivant tous les axes, c'est donc une théorie incomplète. Après la désintégration, et avant la mesure, le système est déjà dans un des deux états  |A+>z |B->z - ou |A->z |B+>z. On a vu précédemment que l'état initial du singulet est 1/√2[ |A+>z |B->z - |A->z |B+>z ]. Comment concilier ces deux aspects? Le système n'autorisant que des prédictions probabilistes, peut-on dire le système est composé de N2 systèmes dans l'état |A+>z |B->z et de n/2 systèmes dans l'état |A->z |B+>z? Comme on l'a déjà dit, ce n'est pas légitime présenter les choses ainsi pour l'état superposé du singulet. Nous semblons nous heurter à une contradiction.  

Si on accepte l'argument d'Einstein, podolski et Rosen, il faut en conclure que le formalisme de la mécanique quantique est incomplet. De plus, pour sortir de la contradiction concernant l'état dans lequel se trouve le système total avant toute mesure, cet argument semble imposer une modification du formalisme: est-ce l'état singulet ou l'un des deux états de spin définis? Si au contraire, compte tenu de ses résultats jamais mis en défaut, on met en doute le fait que la mécanique quantique peut produire un résultat contradictoire, il faut identifier la faille. 


          c) la réponse de Bohr. 

Ce dernier a fourni une réponse dès 1935: pour lui, on ne peut parler de l'existence d'un système et de ses propriétés indépendamment d'instruments de mesure susceptibles d'interagir avec lui. Une propriété physique n'appartient pas à un système microscopique, mais à l'ensemble constitué par le système et l'appareil de mesure. Ce n'est que par commodité de langage que nous attribuons la propriété mesurée au système lui-même. Bohr admet bien sûr que la mesure du spin n'affecte pas B de manière mécanique, par une quelconque perturbation physique au sens habituel, mais sa conclusion est beaucoup dévastatrice pour la conception intuitive: avant la mesure du spin, les deux particules A et B, bien que spatialement séparées par une distance éventuellement très grande, ne forment pas deux entités séparées. L'ensemble constitué par les deux particules est dans l'état singulet 1/√2[ |A+>z |B->z - |A->z |B+>z ], mais ni la particule A ni la particule B ne possède individuellement d'état défini. Seul le système possède un état, cet état singulet. L'écart se creuse ici entre les états classiques et les états quantiques: un objet quantique peut n'être dans aucun état. Lorsque deux systèmes ont interagi, seul le système global est dans un état définiC'est ce qu'on appelle "la non-séparabilité" ou "l'inséparabilité quantique". Il est hors de question d'avoir une représentation intuitive ou imagée d'une telle propriété, elle est trop radicalement en dehors de notre expérience macroscopique.

La solution du paradoxe consiste donc à considérer qu'avant la mesure du spin de A, l'ensemble des deux particules est dans l'état singulet et qu'aucune des deux particules ne possède d'état défini. Lorsque la mesure est effectuée, A acquiert un état individuel qui peut être |A+>z ou |A->z et corrélativement B acquiert l'état |B->z ou |B+>z. Il n'y a plus de contradiction, mais en contrepartie, il faut admettre que la mesure du spin de A permet à B, qui peut être très éloigné, d'acquérir instantanément un état individuel (on ne viole pas le principe de relativité car il est possible de montrer qu'aucune énergie ni information ne peut être transmise de cette manière). Ce qui est encore plus étrange, c'est qu'il en est de même pour la position des 2 particules. A et B forment donc un tout inséparable avant toute mesure et sont séparés par la première mesure effectuée. On peut même se demander s'il convient de parler d'objet à propos de chacune des 2 particules tant que celles-ci n'ont pas été séparées par une mesure sur l'une d'entre elles. 


          d) Les théories à variables cachées.

Cet aspect contre-intuitif de la non-séparabilité n'a pas satisfait ceux des physiciens qui s'opposaient déjà à la mécanique quantique. Ils ont recherché des formalismes différents pour revenir à des comportements plus raisonnables des systèmes physiques avec le désir de rétablis le déterminisme (c'est le sens de la remarque d'Einstein). Mais l'accent a ensuite porté sur les aspects ontologiques. Le défi consiste à construire une théorie qui ne possède pas les propriétés indésirables de la mécanique quantique mais avec les contraintes de fournir les mêmes prédictions. L'idée initiale consiste à supposer que l'état quantique d'un système, qui ne fournit que des contraintes statistiques sur les résultats de mesure, représente une moyenne d'états individuels bien déterminés auxquels on peut associer des valeurs définies des grandeurs. L'état est alors complété par une ou plusieurs variables "cachées" dont la connaissance permettrait de prédire avec certitude la valeur de grandeurs mesurées.  Par exemple: si à un état |Ψ> du formalisme quantique orthodoxe prédit que la variable A peut être a1 avec la probabilité p1 ou a2 avec la probabilité p2, la théorie à variables cachées complétera la description de l'état du système en associant à |Ψ> une variable λ qui pourra valoir +1 ou -1. Si le système est dans l'état |Ψ, +1>, la mesure de A donnera obligatoirement la valeur a1, et si le système est dans l'état |Ψ, -1>, la mesure donnera obligatoirement la valeur a2. Le formalisme quantique n'utilisant que |Ψ> sera donc incomplet puisqu'il ignorera le fait qu'il est possible de donner une description plus fine de l'état. On rétablit ainsi le déterminisme car dans un tel état (dit "sans dispersion", la valeur de l'observable est définie précisément et la connaissance de l'état complet permet de prédire avec certitude le résultat de la mesure. 

La thermodynamique donne en ce sens des prédictions qui sont des moyennes effectuées sur des états que la mécanique statistique spécifie complètement. Louis de Broglie pensait ainsi que la mécanique quantique est la thermodynamique de d'un milieu subquantique. Il a proposé une première théorie de ce type (à variables cachées) en utilisant la dualité onde-corpuscule et en proposant que toute particule soit accompagnée d'une onde qui la guiderait dans son trajet., appelée "théorie de l'onde pilote". Cette théorie donnait une explication simple de l'expérience des trous d'Young. Mais son aspect séduisant présente des difficultés: elle ne transporte aucune énergie mais peut cependant interagir avec l'électron qu'elle guide. De plus, elle ne peut décrire des systèmes de plusieurs particules. De Broglie l'a finalement abandonnée, mais elle fut développée sous un angle différent par David Bohm (Dans un prochain article, cette théorie sera reprise dans le cadre d'une analyse du problème de la mesure et des discussions ontologiques)

De son côté, Von Neumann a énoncé une preuve mathématique selon laquelle aucune théorie à variables cachées ne peut reproduire toutes les prédictions de la mécanique quantique. Elle a abouti à l'abandon de la recherche d'une telle théorie jusqu'à ce qu'on mette en évidence une faille dans son argument. Parmi ces théories, dans celles qu'on appelle "théories locales", les propriétés des systèmes sont déterminées par des facteurs qui ne dépendent pas d'entités éloignées du système lui-même peuvent fournir des prévisions globalement analogues à celles de la mécanique quantique à certaines exceptions près qui, en fait, ont permis de réfuter ces théories. 


          e) Le verdict expérimental: les inégalités de Bell.

L'expérience EPR était une "expérience de pensée" destinée à mettre en évidence des conséquences des conséquences du formalisme mais sans produire aucun effet expérimental testable. C'est Jonh Bell qui dans un célèbre article de 1964 amena la controverse sur le terrain expérimental. Il a montré que toute théorie qui suppose un "comportement local" et qui refuse la "non-séparabilité" est en désaccord avec le mécanique quantique concernant le résultat de certaines mesures corrélées. Ce désaccord est manifesté par une inégalité respectée par les théories locales et violée par la mécanique quantique. Le seule hypothèse faite par Bell est que la théorie en question vérifie le principe de causalité locale selon lequel, la probabilité d'évènements se produisant dans une certaine région de l'espace-temps n'est pas modifiée par un information se produisant dans une autre région  si ces deux régions sont séparées par un intervalle du genre espace (Aucun signal ne peut se propager de l'une à l'autre).


Inégalité de Bell (source wikipédia).

Reprenons l'exemple de deux particules 1 et 2 dans un état singulet, qui se séparent dans deux directions opposées. Les résultats des mesures ne sont pas nécessairement identiques sur les deux particules. Par exemple, on peut mesurer le spin d'une des particules selon un certain angle et le spin de l'autre particule selon un autre angle.

Les résultats des mesures sont alors de nature statistique. Par exemple, la mesure du spin à l'aide d'un polariseur donne toujours un résultat tout ou rien. Ce que l'on obtiendra alors pour les deux mesures sont des statistiques de coïncidences : les deux mesures donnent un résultat identique dans X% des cas (et non 100% dans le cas de mesures identiques). Un grand nombre de mesures successives (sur un grand nombre de paires de particules) permet alors de calculer la corrélation entre ces mesures de spin sous des angles différents.

Si l'on se place dans l'hypothèse des théories locales déterministes à variables cachées, les inégalités de Bell donnent des relations auxquelles ces corrélations doivent obéir.

Nous allons démontrer ces inégalités dans un cas un peu plus simple que celui d'un angle quelconque afin de bien montrer l'origine du raisonnement.

Soit deux particules α et β dont le spin a trois composantes A, B et C. Les composantes peuvent prendre deux valeurs + et -. Pour chaque composante, nous noterons les valeurs A + , B − , etc. Les deux particules ont des spins opposés. Lorsque α a la composante A + , alors β a la composante A − , etc.

On mesure des paires de valeurs AB, AC et BC sur les deux particules. Le résultat des mesures est désigné par A + C − , etc.

Si l'état des particules est déterministe, décrit par des variables cachées, alors chaque particule a un spin parfaitement déterminé avec des composantes A, B et C précises. Même si les variables cachées ne sont pas connues avec exactitude, et donc le spin, il n'empêche que cette valeur précise existe.

Soit un ensemble de particules dans un état de spin donné pris dans un ensemble plus vaste, quelconque, de particules dans tous les états possibles. Par exemple 48bfd0f0518588868d10f09495996751.png est l'ensemble des particules avec ces composantes, edb39279bcc8ab222eb0f9e61b3ac0fd.png l'ensemble des particules avec ces composantes (pour une particule, il existe donc 8 états possibles), ...Alors nous aurons :

22a6868fe0e4ef4db6361767df407537.pnget

d57549b7217f91ac2fc8b2ef3a5137d7.png

Ces relations découlent tout simplement de la théorie des ensembles.Donc :

901576acfeb6a37fbd2cdaac00f5bf19.png

Si 2227fadae165a8119949e92c9398a8ea.png désigne le nombre de particules dans cet état, alors 

80225fcf9155f6b6f4e75c5e40fad606.png 

Comme Il n'est pas possible de mesurer simultanément les composantes suivant les 2 axes du spin d'une particule et donc de tester directement cette inégalité, on peut l'écrire sous la forme n(A1+B2-)  ≤ n(A1+C2-) +n(B1+C2+). Cette inégalité, elle, est testable puisqu'elle ne nécessite qu'une seule mesure de spin suivant B pour la particule 2.

Maintenant, nous effectuons nos mesures sur deux particules de spins opposés et ces particules sont émises sous forme d'un flux de particules de spins quelconques. Nous en déduisons que :

2654018b0122434e4f5e682397ebc25c.png

où 94d7b7259f9131b64177a53c10715e1f.png est la probabilité de mesurer A + sur l'une des particules et B + sur l'autre.

C'est un exemple d'inégalité de Bell.


Dans le cas de la mesure du spin selon un angle quelconque, on n'utilise que deux composantes du spin et l'angle entre les composantes. Le calcul est un peu plus compliqué mais semblable. Le résultat est :

e38f3634608a10c0035ed01a511b4986.png

où α, β et γ sont des angles donnés aux polariseurs et d8b2d889aa18202ea9cdb3ae4d2e007f.png est la fonction de corrélation pour ces deux angles (la corrélation peut être négative).

L'inégalité de Bell découle directement de l'hypothèse , respectée par les théories locales, selon laquelle une particule possède des composantes de spin simultanément définies suivant tous les axes. Or, il se trouve que la mécanique quantique prédit que pour certaines orientations des axes A, B, C, l'inégalité ne sera pas respectée. Dès 1972, des expériences furent menées, mais le montage était redoutablement complexe et l'inégalité ne put être testée directement. La plupart d'entre elles ont montré que l'inégalité est violée, mais jusqu'en 1982, il était encore possible aux partisans des théories à variables cachées de de faire appel à un argument pour sauver leurs conceptions: la direction de mesure était choisie suffisamment tôt pour permettre un éventuel échange d'informations entre les appareils. Il n'était donc pas impossible d'imaginer un hypothétique mécanisme par lequel, une fois toutes les directions de mesure choisies, une influence se propage d'un appareil à l'autre à une vitesse inférieure à celle de la lumière, informant l'appareil de mesure de la particule 1 de la direction choisie pour la mesure sur la particule 2. Cette possibilité a été définitivement écartée par les expériences menées par Alain Aspect (1980-1982)

(source wikipédia):En 1980, il manquait donc encore une expérience décisive vérifiant la réalité de l'état d'intrication quantique, sur la base de la violation des inégalités de Bell(rappel sur l'intrication quantique: L'intrication quantique est un phénomène qui a été pour la première fois mis en évidence par Erwin Schrödinger en 19351. La mécanique quantique stipule que deux systèmes quantiques différents (deux particules par exemple) ayant interagi, ou ayant une origine commune, ne peuvent pas être considérés comme deux systèmes indépendants. Dans le formalisme quantique, si le premier système possède un état |\psi\rangle et le second un état |\phi\rangle, alors le système intriqué résultant est représenté par une superposition quantique du produit tensoriel de ces deux états : |\psi\rangle|\phi\rangle. Dans cette notation, il apparaît nettement que l'éloignement physique des deux systèmes ne joue aucun rôle dans l'état d'intrication (car il n'apparaît aucune variable de position). L'état quantique intriqué reste identique — toutes choses étant égales par ailleurs — quel que soit l'éloignement des deux systèmes. Par conséquent, si une opération de mesure est effectuée sur ce système quantique intriqué, alors cette opération est valable pour les deux systèmes composant l'intricat : les résultats des mesures des deux systèmes sont corrélés.

Alain Aspecta spécifié son expérience pour qu'elle puisse être la plus décisive possible, c'est-à-dire :

Elle doit avoir une excellente source de particules intriquées, afin d'avoir un temps d'expérience court, et une violation la plus nette possible des inégalités de Bell.

Elle doit mettre en évidence non seulement qu'il existe des corrélations de mesure, mais aussi que ces corrélations sont bien dues à un effet quantique (et par conséquent à une influence instantanée), et non à un effet classique qui se propagerait à une vitesse inférieure ou égale à celle de la lumière entre les deux particules.

Le schéma expérimental doit être le plus proche possible du schéma utilisé par John Bell pour démontrer ses inégalités, afin que l'accord entre les résultats mesurés et prédits soit le plus significatif possible.

"Source wikipédia": Rappel du schéma « idéal » de John Bell

 

 

Aspect_epr.png

 

 

Le schéma ci-dessus représente le schéma de principe a partir duquel John Bell a démontré ses inégalités : une source de photons intriqués S émet simultanément deux photons ν1 et ν2 dont la polarisationest préparée de telle manière que le vecteur d'état de l'ensemble des deux photons soit :

3b2e56c625809fa594d45c8dd1f32193.png

Cette formule signifie tout simplement que les photons sont en état superposé : tous les deux en polarité verticale, ou tous deux en polarité horizontale, perpendiculaire, avec une probabilité égale.

Ces deux photons sont ensuite mesurés par deux polariseurs P1 et P2, chacun ayant un angle de mesure paramétrable α et β. Le résultat de la mesure de chaque polariseur est (+) ou (-) selon que la polarisation mesurée est respectivement parallèle ou perpendiculaire à l'angle de mesure du polariseur.

Il y a un point important à souligner ici : les polariseurs imaginés dans cette expérience idéale donnent un résultat mesurable dans le cas (+) ET dans le cas (-). Ce n'est pas le cas de tous les polariseurs réels : certains détectent le cas (+) par exemple, et ne détectent rien (le photon ne ressort pas du polariseur) pour le cas (-). Les premières expériences, relatées ci-dessus, utilisaient ce genre de polariseur. Les polariseurs utilisés par Alain Aspect détectent bien les deux cas (+) et (-), se rapprochant ainsi de l'expérience idéale.

Etant donné le dispositif et l'état de polarisation initial donné aux photons, la mécanique quantique permet de prédire les probabilités de mesurer (+,+), (-,-), (+,-) et (-,+) sur les polariseurs (P1,P2), orientés sur les angles (α,β) ; pour rappel :

7c7e47c861f7f227429d6f4a4326952b.png

caa7c5c8cac0b8c28d584e6a49f0169f.png

On peut démontrer (voir articleInégalités de Bell) que la violation maximale des inégalités est prévue pour |α-β| = 22°5

 

Polariseurs à orientation variable et en position éloignée: Un point très important qui devait être testé par cette expérience est qu'il fallait s'assurer que les corrélations entre les mesures faites par P1 et P2 ne soient pas induites par des effets d'origine « classique », et notamment par des artefacts expérimentaux.

Par exemple, si l'on prépare les polariseurs P1 et P2 avec des angles fixes donnés α et β, on peut toujours imaginer que cet état fixe génère des corrélations parasites via des boucles de courant, de masse, ou autres effets. Car les deux polariseurs font partie d'une même installation et peuvent très bien être influencés l'un l'autre via les divers circuits du dispositif expérimental, et générer des corrélations lors de la mesure.

On peut également imaginer que l'orientation fixe des polariseurs influe, d'une manière ou d'une autre, sur l'état avec lequel le couple de photons est émis.Dans ce cas, les corrélations de mesure pourraient s'expliquer par des variables cachées au niveau des photons, dès l'émission.(Ces observations avaient été faites à Alain Aspect par John Bell lui-même).

Une manière incontestable de mettre hors de cause ce genre d'effets — quels qu'ils soient — est que l'orientation (α,β) des polariseurs soit déterminée au dernier moment (après l'émission des photons, et avant la détection) et qu'ils soient suffisamment éloignés l'un de l'autre pour qu'aucun signal n'aie le temps d'aller de l'un à l'autre.

De cette manière, on ne peut invoquer ni une influence de l'orientation des polariseurs au niveau de l'émission des photons (car lors de l'émission, l'orientation est encore indéterminée), ni une influence d'un polariseur sur l'autre (car les polariseurs sont trop éloignés l'un de l'autre pour pouvoir s'influencer).

En conséquence, dans le dispositif expérimental d'Aspect, les polariseurs P1 et P2 étaient séparés de 6m de part et d'autre de la source, et de 12m l'un de l'autre. Cela donnait un temps de 20ns entre l'émission des photons et la détection : c'est le laps de temps extrêmement court pendant lequel il fallait décider de l'orientation et orienter les polariseurs.

Comme il est physiquement impossible de changer matériellement l'orientation d'un polariseur dans ce laps de temps, deux polariseurs par côté ont été utilisés, pré-orientés différemment. Un « aiguillage » à très haute fréquence de basculement orientait aléatoirement le photon vers l'un ou l'autre de ces polariseurs. L'ensemble de ce dispositif était équivalent à un seul polariseur dont l'angle de polarisation bascule aléatoirement.

Comme il n'était pas possible non plus de provoquer le basculement des aiguillages par l'émission du couple de photons, chaque aiguillage basculait en fait périodiquement avec une période de 10ns, de manière asynchrone avec l'émission des photons. Mais étant donné la période, on était assuré que l'aiguillage bascule au moins une fois entre l'émission d'un photon et sa détection.

 

Le dispositif expérimental a été conçu pour que la direction de mesure de la particule 2 soit choisie à un moment où il est trop tard pour qu'un signal, même se propageant à la vitesse de la lumière puisse influence la mesure de la particule 1. Le verdict expérimental est sans appel: toute théorie à variables cachées locale est réfutée par l'expérienceLa séparabilité, c'est à dire le fait qu'une mesure effectuée par un instrument sur une particule ne peut influencer le résultat d'une mesure faite par un autre instrument éloigné sur une particule ayant interagi avec la première, doit être abandonnée.  


3) Résumé et conclusions.

Non séparabilité. Si une théorie est locale, les mesures de corrélation portant sur certaines de ses grandeurs doivent vérifier les inégalités de Bell. Les prédictions de la mécanique aboutissent à une violation de ces inégalités, or l'expérience montre que ces inégalités sont bien violées. 

Deux positions sont alors possibles: 

     - Position des défenseurs des théories à variables cachées non locales: continuer à admettre que les propriétés d'un système peuvent être toutes simultanément définies, mais alors il faut accepter le fait que les propriétés d'une particule peuvent influencer instantanément celles d'une autre particule ayant interagi avec elle. 

      - Rejeter le fait que les propriétés d'un système sont simultanément définies et accepter le formalisme de la mécanique quantique. 

Dans les deux cas, il est nécessaire d'admettre que certaines propriétés ou certains évènements peuvent s'influencer instantanément, quelle que soit la distance entre eux. Mais les théories à variables cachées locales (comme toutes les théories locales) sont de toute façon réfutées par l'expérience. Cette propriété est appelée "non-séparabilité" lorsque elle s'applique à la mécanique quantique et "non-localité" lorsqu'elle s'applique aux variables cachées non locales. En mécanique quantique, elle exprime que des systèmes qui ont interagi ne peuvent être indépendants tant qu'une mesure ne les a pas séparés, même s'ils sont à très grande distance l'un de l'autre (cas de l'état singulet) et aucun d'eux ne possède d'état individuel. Dans les théories à variables cachées on locales, on suppose au contraire que chaque particule possède des propriétés bien définies, mais qui ne sont pas indépendantes l'une de l'autre. la non-localité exprime donc ici la possibilité d'influences à distance instantanées de certaines propriétés sur d'autres (comme le dirait Michel Bitbol, la non-localité est une projection ontologique de la non-séparabilité).

 

Contextualisme. Un autre théorème important de limitation est celui de Kochen et Specker qui montre que toute théorie à variable s cachées déterministe compatible avec la mécanique quantique doit être contextualiste. Prenons un exemple. Soit un système physique S et 3 observables A, B, C telles que B et C sont compatibles avec A mais pas entre elles. Supposons qu'on mesure simultanément A et B ou A et C. Dans une théorie à variables cachées déterministe, on s'attend à ce que la mesure de A dépende de l'état global du système, mais pas du choix (B ou C) de l'autre observable mesurée, donc à ce que la mesure d'une observable ne dépende pas du contexte. Une telle théorie est appelée "non contextualiste". Comme le dit D'Espagnat, "Les conditions qui définissent les types de possibles de prédictions concernant le comportement futur des systèmes quantiques sont partie inhérente de la description de tout phénomène auquel la'expression "réalité physique" peut valablement être attachée". On retrouve ici la réfutation par Bohr du paradoxe EPR. Il suggérait seulement l'existence d'une influence sur les types de prédictions qu'on pouvait faire (position...). Ici l'influence sur les valeurs même des grandeurs dynamiques. Toute théorie reproduisant les prédictions de la mécanique quantique doit donc être non locale et contextualiste.On est alors loin de la motivation originelle qui a présidé à la construction des théories à variables cachées. 


Dans le prochain article, nous reviendrons sur le problème de la mesure avec le rôle de la conscience et les différentes solutions qui y ont été apportées et les conséquences philosophiques.

 


Retour à l'accueil