Les limites de la connaissance 6-3) Réalisme et monde quantique 

 ébauche d'analyse des implications ontologiques. théories à variables cachées, non-séparabilité et le problème de la mesure

 

partie 1

www.math.polytechnique.fr/~paul/ceri.pdf (formalisme quantique).


formalisme+quantique+mandala-3d.jpg

mandala. formalisme quantique



 

Préambule

La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?


Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gödel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?

(Je voudrais ici faire partager ma lecture de Hervé Zwirn).


Les limites de la connaissance 6) Réalisme et monde quantique

  6-3:ébauche d'analyse des implications ontologiques. théories à variables cachées, non-séparabilité et le problème de la mesure


I) Principales étapes de l'article.

1) Ebauche d'analyse des implications ontologiques.

          a) Le caractère abstrait du formalisme quantique est déroutant. 

          b) Signification de ces propriétés: 

                  A) Disparition de la correspondance directe entre état et propriétés. 

                  B) Indéterminisme.

                  C) Interférence des amplitudes de probabilité.

2) Les théories à variables cachées et la non-séparabilité.

           a) La complétude de la mécanique quantique    

           b) Le paradoxe EPR.

           c) la réponse de Bohr. 

           d) Les théories à variables cachées.

           e) Le verdict expérimental: les inégalités de Bell.

 3) Résumé et conclusions

Toute théorie reproduisant les prédictions de la mécanique quantique doit donc être non locale et contextualiste.

Schrodinger__s_cat_by_chubas7.jpg

le chat de Schrödinger



II) Contenu de l'article. 1) Ebauche d'analyse des implications ontologiques.


          a) Résumé des propriétés quantiques.

Le caractère abstrait du formalisme quantique est déroutant. "Il consiste à établir une correspondance entre, d'une part, les systèmes physiques, les grandeurs attachées à ces systèmes et  les observations effectuées, et, d'autre part, des objets mathématiques et des équations portant sur ces objets, de telle sorte que, les résultats mathématiques obtenus, une fois retraduits en fonction de ce qu'ils représentent, reproduisent correctement les observations physiques. La justification du formalisme repose a posteriori sur son adéquation avec avec les résultats physiques qu'il prédit." 

On ne doit pas chercher de compréhension intuitive physique directe des objets du formalisme quantique. L'état quantique d'un système est représenté par un vecteur appartenant à un espace vectoriel appelé "espace de Hilbert des états".Comme pour tout espace vectoriel, toute combinaison linéaire d'états possible est elle-même un état possible (c'est le principe de superposition). 


A chaque grandeur physique (position, impulsion, énergie,spin...) attachée au système, est associé un opérateur qui agit sur les états possibles; il est appelé "une observable". Le principe de réduction du paquet d'ondes stipule que lorsqu'on mesure une observable A sur un système dans l'état |ψ>, on ne peut obtenir comme résultat que l'une des valeurs propres de l'observable A. Si celle-i possède plusieurs valeurs propres distinctes, la probabilité d'obtenir une valeur propre donnée a est fonction de l'état initial |ψ>, et des états propres de A associés à a. C'est le carré du module de la projection de |ψ> sur le sous-espace propre engendré par les vecteurs propres de |ψ> associés à a. Après une mesure ayant donné a comme résultat, le système n'est plus dans l'état |ψ> mais il est projeté dans l'état propre associé à a:

Une observable est formalisée mathématiquement par un opérateur agissant sur les vecteurs d'un espace de Hilbert \mathcal{H} (chaque état quantique étant représenté par un vecteur dans cet espace).

Le sens de cet opérateur observable est de donner la possibilité de décomposer un état quantique quelconque |\psi\rangle (donc un vecteur quelconque de l'espace de Hilbert) en une combinaison linéaired'états propres, chacun de ces états étant un état possible résultant de l'opération de mesure.

Soient |\alpha_i\rangle les vecteurs propres d'un opérateur \hat{A} (éventuellement en nombre infini selon l'observable).

\hat{A} \Rightarrow |\psi\rangle = c_1 |\alpha_1\rangle + c_2 |\alpha_2\rangle + .. + c_n |\alpha_n\rangle + ..

c_i = \langle\psi|\alpha_i\rangle étant le coefficient complexe de cette combinaison linéaire. (C'est une projection, produit scalaire dans l'espace de Hilbert).

Ce coefficient donne la probabilité pour qu'un état propre \left| \alpha_i \right\rangle soit le résultat de la mesure d'un état quantique |\psi\rangle 

P = {|\langle\psi |\alpha_i\rangle|}^2 (en supposant que \left| \psi \right\rangle et \left| \alpha_i\right\rangle soient normés)

L'ensemble des vecteurs propres |\alpha_i\rangle n'est autre que l'ensemble des résultats possibles de l'opération de mesure formalisée par l'observable.

Les états qui s'expriment avant la mesure sous la forme simple |\phi\rangle = c_i |\alpha_i\rangle sont appelés état propre ou état pur. En règle générale, un état quantique n'est pas pur et sont des états superposés, pour cette observable.

Un état peut être pur selon une observable donnée, et être superposé selon une autre observable. C'est d'ailleurs la raison fondamentale du principe d'incertitude d'Heisenberg : un état quantique qui est pur pour une observable (et qui possède donc une valeur précise pour cette observable), peut avoir tout un ensemble de valeurs possibles pour une autre observable.

Après l'opération de mesure, le système physique mesuré sera dans l'un des états propres définis par l'observable (postulat d'effondrement de la fonction d'onde).

La mesure d'une observable (ou d'un ensemble complet d'observables qui commutent) permet de connaître précisément l'état dans lequel est le système. En général, comme il n'est pas dans le même état avant et après la mesure, il est impossible de mesurer une grandeur sans perturber le système (sauf si celui-ci est déjà dans un état propre de l'observable mesurée). Quand on connaît avec précision la valeur d'une observable, la valeur des observables qui ne commutent pas avec elle n'est pas définie. En l'absence de mesure, l'état du système évolue de manière déterministe selon l'équation de Schrödinger


          b) Signification de ces propriétés: 


A) Disparition de la correspondance directe entre état et propriétés. 

L'état d'un système n'est plus, comme en mécanique classique, la liste exhaustive des valeurs possédées par les grandeurs physiques attachées au système. L'état quantique est déterminé par une mesure des valeurs simultanées d'un ensemble d'observables qui commutent (ce qui est possible car elle sont compatibles, elles commutent). Mais le prix à payer est que toutes les autres observables ne pourront plus être considérées comme ayant des valeurs définies lorsque le système est dans cet état (On pourrait objecter que que ce n'est pas parce que nous ne pouvons pas mesurer simultanément ces valeurs, qu'elles n'ont pas,  indépendamment de notre connaissance, une valeur définie. L'analyse des états superposés montre que la mécanique quantique orthodoxe n'autorise pas une telle interprétation. Certaines tentatives ont été faites dans ce sens, comme les théories à variables cachées). On pourrait se représenter les états quantiques comme des états classiques pour lesquels il serait impossible, par principe, de donner toutes les valeurs simultanément, mais même si l'état ne peut spécifier qu'une partie des propriétés, cette donnée est censée représenter la totalité des informations sur le système (en fait, il y a des propriétés d'interférence qui peuvent exister entre certaines composantes de l'état) . On dit que la mécanique quantique est "complète". Il ne faut pas penser que l'état "réel" du système est "lui" plus complet que l'état quantique qui ne peut "encapsuler" qu'une partie de cet état. L'état réel est l'état quantique et rien d'autre (ce qui a choqué Einstein). Il ne spécifie pas les valeurs de toutes les propriétés simultanément  non parce qu'il est incomplet, mais parce qu'un état qui les spécifierait simultanément est physiquement impossible

Prenons l'exemple des propriétés d'impulsion, position et spin. Ces 3 ,grandeurs sont des vecteurs déterminés par leurs 3 composantes suivant un système d'axes orthonormés Oxyz. A chaque projection sur un axe correspond une observable. La position est associée à aux 3 observables Rx,Ry,Rz, l'impulsion à Px,Py,Pz et le spin à Sx,Sy,Sz. Les 3 observables de position commutent. Il est donc possible de connaître les vecteurs position ou impulsion d'une particule. En revanche, les observables de spin ne commutent pas 2 à 2. Il est donc impossible de connaître simultanément la valeur du spin de la projection du spin sur deux axes distincts. Les observables De spin commutent toutes avec celles de position et d'impulsion, mais ces dernières ne commutent que lorsqu'elles sont en projection sur un axe différent (Rx et Py commutent, mais pas Rx et Px). 

L'image classique de d'un système possédant de propriétés qui lui sont attachées indépendamment de toute mesure doit donc être abandonnée. Les propriétés n'ont pas de valeur en soi mais s'en voient attribuer une selon la mesure qu'on en fait. On doit en conclure que l'existence d'une propriété n'est plus un attribut de l'objet lui-même, mais de l'ensemble composé par l'objet et par l'appareil de mesure utilisé. On peut d'une certaine manière dire que c'est la mesure qui crée la propriété ou que la propriété n'est devenue qu'une simple potentialité. Le spin suivant Os devient une manière de parler de ce qui peut se produire lorsqu'on fait passer un électron dans un appareil de Stern et Gerlach. Initialement, c'est Bohr qui a mis en avant une telle manière de présenter la mesure. 

Il existe cependant une échappatoire permettant de connaître partiellement la valeur de deux observables qui ne commutent pas. Si on se contente de le mesurer approximativement la position d'une particule, il est possible de connaître simultanément l'impulsion amis de manière approximative aussi. le précision qu'on est en droit d'attendre de ces mesures simultanées est limitée par les relations d'incertitude de Heisenberg qui stipulent que le produit des incertitudes sur deux mesures incompatibles est toujours supérieur à une certaine constante (h/4π  dans la cas de la position et de l'impulsion). Dans le cas d'une précision infinie sur la position, l'impulsion ne sera plus définie du tout comme on vient de la voir pour la définition de l'état d'un système. 

Dans le monde macroscopique, on a l'impression que qu'on peut toujours mesurer simultanément la position et la vitesse, l'imprécision des appareils de mesure entraîne toujours une certaine incertitude. Nous avons l'illusion que celle-ci peut être aussi réduite que nous voulons, mais nous sommes très loin des limites imposées par la mécanique quantique.  Par exemple pour un grain de poussière de diamètre 1μ, de masse 10-15 kg, de vitesse 10-3 m/s, une mesure de position à  0,001 μ près engendrera une incertitude sur l'impulsion de 10-26 kg.m/s, soit une incertitude relative de 10-8, bien au-delà de la précision de nos appareils de mesure. Le fait d'attribuer aux objets des propriétés ayant des valeurs définies est une illusion due à la sensibilité limitée de nos appareils de mesure.


B) Indéterminisme.

Les prédictions de la mécanique quantique sont de nature probabiliste. Contrairement à la mécanique classique, il est impossible de prédire avec certitude le résultat d'une mesure même si on connaît précisément l'état initial du système. En mécanique classique, il existe une correspondance biunivoque stricte entre l'état du système et la valeur de ses propriétés. Connaitre l'état est rigoureusement équivalent à connaître la valeur des propriétés. En mécanique quantique, l'évolution de l'état du système est aussi déterministe, elle est régie par l'équation de Schrödinger.  La connaissance de l'état initial permet de prédire avec certitude les états ultérieurs du système tant qu'on n'effectue aucune mesure. Mais connaître l'état du système à un instant donné, ne suffit pas pour prédire la valeur de ses propriétés. La conséquence est que même si l'état évolue de manière déterministe entre les mesures, le résultat d'une mesure ne peut plus être prédit que de manière probabiliste. 

Les prédictions de la mécanique quantique ont donc irréductiblement un caractère essentiellement probabiliste. La nécessité de se contenter de prédictions probabilistes était déjà apparu en mécanique classique dans la mécanique statistique et la thermodynamique. Les caractéristiques globales des gaz (température, pression), sont expliquées par les mouvements des molécules. La pression est due aux chocs des molécules sur les parois d'un récipient. La mécanique classique avec la loi des chocs permet en principe de calculer toutes les trajectoires. Ce n'est que la pratique (un litre de gaz comporte de l'ordre de 1022 molécules), qui ne permet pas de résoudre ni même d'exprimer le système. On en est donc réduit à se contenter de calculer des moyennes sur ces trajectoires à partir des probabilités. Mais il est admis que que chaque molécule possède à tout moment une vitesse et une position déterminées. Les probabilités permettent de d'effectuer des moyennes sur un grand nombre de molécules , moyennes qui représentent justement la pression ou la température du gaz. Elles permettent de reproduire les résultats de la thermodynamique qui, elle, obtenait ces résultats sans faire d'hypothèse sur la constitution interne du gaz. La mécanique statistique est donc une théorie probabiliste, mais la nature probabiliste de ce mécanisme est due à l'impossibilité matérielle de traiter trop d'informations à la fois, elle n'entraîne aucune conséquence ontologique sur le comportement des systèmes qu'elle étudie.

Par contre, la nature probabiliste de la mécanique quantique est toute différente. Ce n'est pas notre incapacité  à traiter trop d'informations à la fois ou notre méconnaissance des états précis  qui rendent nécessaire l'utilisation des probabilités, mais la nature des objets quantiques, il y a une conséquence ontologique sur cette nature. L'indéterminisme quantique est intrinsèque et résulte non pas de l'évolution des états (qui est déterministe) mais de la disparition de la correspondance directe entre un état et la valeur des propriétés du système dans cet état. 


C) Interférence des amplitudes de probabilité.

Quelques rappels: L'état |ψ> d'un système ne peut plus être interprété comme la liste des valeurs possédées par l'ensemble des propriétés d'un système. On peut alors être tenté par se représenter un état quantique comme l'analogue d'un état classique pour lequel on s'interdit de donner des valeurs à toutes les valeurs simultanément. Mais cette représentation n'est pas bonne, car elle ne rend pas compte des capacités des composantes de l'état à interférer entre elles. 

Résumé de l'expérience du passage de l'électron à travers des trous d'Young. |1> est l'état de l'électron qui est passé par le trou 1 (||2> pour le trou 2) (ou plutôt pour lequel une mesure a montré qu'il était passé par le trou 1). On peut dire que c'est cette mesure qui a précipité l'électron dans l'état |1>. Lorsqu'un appareil de mesure permettant de savoir par quel trou est passé chaque électron est en place, tout électron est soit dans l'état |1>, soit dans l'état |2>. Dans ce cas il n'y a pas d'interférence. Le principe de réduction du paquet d'ondes dit qu'une mesure de position sur l'écran d'un électron dans l'état |1> donnera le résultat x avec une probabilité égale au carré du module de la projection de |1> sur l'état |x>, état qui correspond à à un électron observé à la position x. Cette probabilité se note p1(x) = |<x|1>|² (produit scalaire dans le formalisme de la mécanique quantique). Cela donne une courbe de répartition des impacts présentant un maximum en face du trou 1, et de même pour l'état 2. Comme chaque électron arrivant sur l'écran est alors soit dans l'état 1, soit dans l'état 2,  la courbe finale sera la somme des deux courbes, courbe totale sans interférence correspond à la probabilité: p(x) = 1/2[p1(x)  +p2(x)] = 1/2[|<x|1>|² + |<x|2>|²].

Par contre, si on n'observe pas quel trou passent les électrons, ceux-ci arrivent dans l'état superposé 1/√2[|1> + |2 >] (le facteur √2 et un facteur de normalisation).  Le principe de réduction du paquet d'ondes dit alors que la probabilité d'observer un impact à la position x est donné par:    [|<x|1>|² + |<x|A|²] + <1|x><x|2> + <2|x><x|1>]. Les deux termes supplémentaires (appelés termes croisés) sont ceux qui induisent la présence d'interférences entre les deux états |1> et |2> au sein de l'état superposé. 

En conclusion, c'est le sens de la suggestion de Max Born pour l'interprétation qu'il convient de donner l'état |ψ> d'un système: c'est une amplitude de probabilité (La probabilité pour que , lors d'une mesure, on obtienne un résultat x et que le système soit projeté dans l'état propre associé à |x>, est égale au carré du module de la projection de l'état initial |ψ> sur l'état  |x>. Si on note |Ψ(x)> la projection de  |ψ> sur |x>, la probabilité d'obtenir x est alors |ψ(x) 2|).


En mécanique quantique ondulatoire, une amplitude de probabilité est une fonction à valeurs complexes associée à la probabilité de trouver le système dans un état particulier.

Soit une particule quantique. On la décrit par une fonction d'onde \psi : \mathbf{R}^3\rightarrow \mathbf{C}; cette fonction décrit l'état du système. Dans l'interprétation de Copenhague, l'interprétation majoritairement admise dans la communauté scientifique, on dit que les valeurs de ψ représentent des amplitudes de probabilité. Lors d'une mesure de la position d'une particule, la probabilité qu'elle soit dans un volume V est donnée par

\int_V |\psi(\mathbf x)|^2\,\mathrm d\mathbf x,

c'est-à-dire que | ψ | 2 représente la densité de probabilité de la position de la particule.

Cela confirme que l'état quantique ne représente plus la liste des valeurs possédées par les propriétés d'un système, mais un outil mathématique utilisé pour calculer les probabilités que les propriétés du système aient telle ou telle valeur. De plus, |Ψ> ne représente même pas directement une probabilité, c'est le carré de son module qui est une probabilité, c'est pour cela qu'on parle d'amplitude de probabilité. C'est ce qui a fait dire à Heisenberg: "La conception de la réalité objective des particules élémentaires s'est donc étrangement dissoute, non pas dans le brouillard d'une nouvelle conception de la réalité obscure ou mal comprise, mais dans la clarté transparente d'une mathématique qui ne représente plus le comportement de la particule élémentaire, mais la connaissance que nous en possédons." 


2) Les théories à variables cachées et la non-séparabilité.


images.jpg

www.lilaluz.net

a) La complétude de la mécanique quantique.  Dès le début, l'abandon d'un grand nombre de caractéristiques propres à la physique classique provoqua l'opposition entre deux conceptions.  D'une part celle d'Einstein, Schrödinger et De Broglie qui restent attachés à un physique réaliste dans laquelle les objets ont une existence "en soi", des propriétés bien définies qui ne dépendent nullement du processus d'observation et tels qu'une prédiction non probabiliste des résultats reste, au moins en principe, possible. C'est le sens de la célèbre affirmation d'Einstein: "Dieu au moins, ne joue pas aux dés". Pour Einstein, puisque l'état quantique ne permet pas aux différentes propriétés d'un système de posséder des valeurs simultanément, alors que, selon lui, il va de soi que ces propriétés ont "en réalité" des valeurs définies, c'est que le formalisme quantique est incomplet. Une théorie , pour être complète doit avoir la propriété qu'à chaque élément de la réalité physique corresponde un élément de la théorie. La mécanique quantique, devrait donc se voir compléter par des éléments supplémentaires permettant de rétablir une connaissance précise de l'ensemble des propriétés d'un système: ce sont les variables cachées.

 D'autre part, celle dite de "l'école de Copenhage", principalement défendue par Bohr et Heinsenberg. En gros, elle accepte les étrangetés telles quelles. L'interprétation de Copenhague consiste, pour résoudre un problème, à simplement appliquer les postulats de la mécanique quantique pour prédire le résultat. Même si le résultat est choquant pour l'intuition (paradoxe EPR), les adeptes de Copenhague considèrent que si la mécanique quantique a prédit correctement l'issue, elle se suffit à elle-même ; il n'est pas nécessaire d'introduire des variables cachées. Il n'y a pas non plus à tirer des conclusions sur la nature de l'univers : l'issue est contenue dans les postulats, il n'y a pas d'autre conclusion à en tirer. se poser des questions sur ce qui se passe "réellement" entre deux mesures n'est pas pertinent. seule importe la connaissance de ce qui est mesurable, le reste est dépourvu de sens. Cette pensée est à rapprocher de l'Empirisme, on peut la qualifier de d'instrumentaliste ou de positiviste. Elle se satisfait de l'efficacité prédictive de la théorie et va même jusqu'à décréter dépourvue de sens toute question qui ne se réfère pas à un phénomène observable.

Précédents historiques: Sans doute pour avoir la paix, Nicolas Copernic prit soin de deux choses : d’une part ne publier qu’à titre posthume, d’autre part mentionner que la relativité dont il parlait constituait avant tout un moyen commode de simplifier les calculs par rapport à la théorie des épicycles utilisée à son époque, sans chercher à se prononcer sur une quelconque réalité sous-jacente.
Cette considération de Copernic annonce déjà l’attitude qui sera plus tard celle de l’École de Copenhague en mécanique quantique : décrire, sans nécessairement prétendre expliquer, et s’en tenir aux faits observables. Hypotheses non fingo, dira Isaac Newton : « Je n’avance pas d’hypothèses », je constate juste pour le moment que les choses fonctionnent ainsi. Richard Feynman prend soin d’enseigner la mécanique quantique avec la même prudence dans son cours, tout en déplorant le côté frustrant et non satisfaisant pour l’esprit de la chose.

Ce désaccord fondamental éclate violemment lors de la parution en 1935 d'un article d'Einstein, Podolski et Rosen (paradoxe EPR) qui suggèrent une expérience destinée à mettre en défaut le caractère de complétude de la mécanique quantique. Il est habituellement présenté sous une forme plus simple proposée par Bohm.

 

Pour la suite de cet article, voir:

Les limites de la connaissance 6-3 Réalisme et monde quantique: ébauche d'analyse des implications ontologiques. théories à variables cachées, non-séparabilité et le problème de la mesure.   partie 2.


 


       

 

 

Retour à l'accueil